Distributed multi-robot teams are increasingly used for optimal coverage of domains with unknown density distributions, often modeled with Gaussian Processes (GPs). However, current methods rely on data sharing, raising privacy concerns and computational issues. We propose a Federated Learning (FL) approach that enables collaborative training of GP models without sharing raw data. To enhance scalability and efficiency, we introduce a filtering strategy that selects relevant data samples, minimizing computational load. Realistic simulations emulating real world scenarios demonstrate the effectiveness of our method in achieving robust environmental estimates with minimal data sharing and reduced complexity.

Online Multi-Robot Federated Learning for Distributed Coverage Control of Unknown Spatial Processes / Mantovani, M.; Pratissoli, F.; Sabattini, L.. - (2025), pp. 13773-13779. ( 2025 IEEE International Conference on Robotics and Automation, ICRA 2025 Georgia World Congress Center, 285 Andrew Young International Blvd NW, usa 2025) [10.1109/ICRA55743.2025.11127504].

Online Multi-Robot Federated Learning for Distributed Coverage Control of Unknown Spatial Processes

Mantovani M.
;
Pratissoli F.;Sabattini L.
2025

Abstract

Distributed multi-robot teams are increasingly used for optimal coverage of domains with unknown density distributions, often modeled with Gaussian Processes (GPs). However, current methods rely on data sharing, raising privacy concerns and computational issues. We propose a Federated Learning (FL) approach that enables collaborative training of GP models without sharing raw data. To enhance scalability and efficiency, we introduce a filtering strategy that selects relevant data samples, minimizing computational load. Realistic simulations emulating real world scenarios demonstrate the effectiveness of our method in achieving robust environmental estimates with minimal data sharing and reduced complexity.
2025
2025 IEEE International Conference on Robotics and Automation, ICRA 2025
Georgia World Congress Center, 285 Andrew Young International Blvd NW, usa
2025
13773
13779
Mantovani, M.; Pratissoli, F.; Sabattini, L.
Online Multi-Robot Federated Learning for Distributed Coverage Control of Unknown Spatial Processes / Mantovani, M.; Pratissoli, F.; Sabattini, L.. - (2025), pp. 13773-13779. ( 2025 IEEE International Conference on Robotics and Automation, ICRA 2025 Georgia World Congress Center, 285 Andrew Young International Blvd NW, usa 2025) [10.1109/ICRA55743.2025.11127504].
File in questo prodotto:
File Dimensione Formato  
25ICRA.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1388458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact