Many Machine Learning and Deep Learning algorithms are widely used with remarkable success in scenarios whose benchmark datasets consist of reliable data. However, they often struggle to handle realistic scenarios, particularly those in the financial sector, where available data constantly vary, increase daily, and may contain noise. As a result, we present an overview of the ongoing research at the AImageLab research laboratory of the University of Modena and Reggio Emilia, in collaboration with AxyonAI, focused on exploring Continual Learning methods in the presence of noisy data, with a special focus on noisy labels. To the best of our knowledge, this is a problem that has received limited attention from the scientific community thus far.

Novel continual learning techniques on noisy label datasets / Millunzi, M.; Bonicelli, L.; Zurli, A.; Salman, A.; Credi, J.; Calderara, S.. - 3486:(2023), pp. 517-521. ( 2023 Italia Intelligenza Artificiale - Thematic Workshops, Ital-IA 2023 Italy 2023).

Novel continual learning techniques on noisy label datasets

Millunzi M.
;
Bonicelli L.;Zurli A.;Credi J.;Calderara S.
2023

Abstract

Many Machine Learning and Deep Learning algorithms are widely used with remarkable success in scenarios whose benchmark datasets consist of reliable data. However, they often struggle to handle realistic scenarios, particularly those in the financial sector, where available data constantly vary, increase daily, and may contain noise. As a result, we present an overview of the ongoing research at the AImageLab research laboratory of the University of Modena and Reggio Emilia, in collaboration with AxyonAI, focused on exploring Continual Learning methods in the presence of noisy data, with a special focus on noisy labels. To the best of our knowledge, this is a problem that has received limited attention from the scientific community thus far.
2023
2023 Italia Intelligenza Artificiale - Thematic Workshops, Ital-IA 2023
Italy
2023
3486
517
521
Millunzi, M.; Bonicelli, L.; Zurli, A.; Salman, A.; Credi, J.; Calderara, S.
Novel continual learning techniques on noisy label datasets / Millunzi, M.; Bonicelli, L.; Zurli, A.; Salman, A.; Credi, J.; Calderara, S.. - 3486:(2023), pp. 517-521. ( 2023 Italia Intelligenza Artificiale - Thematic Workshops, Ital-IA 2023 Italy 2023).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1383989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact