Machine learning interatomic potentials (MLIPs) offer a promising alternative to traditional force fields and ab initio methods for simulating complex materials such as oxide glasses. In this work, we present the first evaluation of the pretrained MACE (Multi-ACE) model [D.P. Kovács et al., J. Chem. Phys. 159(2023), 044118] for silicate glasses, using sodium silicates as a test case. We compare its performance with a DeePMD-based MLIP specifically trained on sodium silicate compositions [M. Bertani et al., J. Chem. Theory Comput. 20(2024), 1358-1370] and assess their accuracy in reproducing structural and dynamical properties. Additionally, we investigate the role of dispersion interactions by incorporating the D3(BJ) correction in both models. Our results show that while MACE accurately reproduces neutron structure factors, pair distribution functions, and Si[Qn] speciation, it performs slightly worst for elastic properties calculations. However, it is suitable for the simulations of sodium silicate glasses. The inclusion of dispersion interactions significantly improves the reproduction of density and elastic properties for both MLIPs, highlighting their critical role in glass modeling. These findings provide insight into the transferability of general MLIPs to disordered systems and emphasize the need for dispersion-aware training data sets in developing accurate force fields for oxide glasses.

Revisiting Machine Learning Potentials for Silicate Glasses: The Missing Role of Dispersion Interactions / Pedone, Alfonso; Bertani, Marco; Benassi, Matilde. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - 21:9(2025), pp. 4769-4778. [10.1021/acs.jctc.5c00218]

Revisiting Machine Learning Potentials for Silicate Glasses: The Missing Role of Dispersion Interactions

Pedone, Alfonso
;
Bertani, Marco;Benassi, Matilde
2025

Abstract

Machine learning interatomic potentials (MLIPs) offer a promising alternative to traditional force fields and ab initio methods for simulating complex materials such as oxide glasses. In this work, we present the first evaluation of the pretrained MACE (Multi-ACE) model [D.P. Kovács et al., J. Chem. Phys. 159(2023), 044118] for silicate glasses, using sodium silicates as a test case. We compare its performance with a DeePMD-based MLIP specifically trained on sodium silicate compositions [M. Bertani et al., J. Chem. Theory Comput. 20(2024), 1358-1370] and assess their accuracy in reproducing structural and dynamical properties. Additionally, we investigate the role of dispersion interactions by incorporating the D3(BJ) correction in both models. Our results show that while MACE accurately reproduces neutron structure factors, pair distribution functions, and Si[Qn] speciation, it performs slightly worst for elastic properties calculations. However, it is suitable for the simulations of sodium silicate glasses. The inclusion of dispersion interactions significantly improves the reproduction of density and elastic properties for both MLIPs, highlighting their critical role in glass modeling. These findings provide insight into the transferability of general MLIPs to disordered systems and emphasize the need for dispersion-aware training data sets in developing accurate force fields for oxide glasses.
2025
21
9
4769
4778
Revisiting Machine Learning Potentials for Silicate Glasses: The Missing Role of Dispersion Interactions / Pedone, Alfonso; Bertani, Marco; Benassi, Matilde. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - 21:9(2025), pp. 4769-4778. [10.1021/acs.jctc.5c00218]
Pedone, Alfonso; Bertani, Marco; Benassi, Matilde
File in questo prodotto:
File Dimensione Formato  
Bertani_JCTC2025.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] creative-commons
Dimensione 3.66 MB
Formato Adobe PDF
3.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1382856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact