To transfer the power between non-parallel shafts, bevel gear pairs, especially spiral bevel gear pairs (SBGs), play a significant role in transmission systems. SBGs are smooth, quiet, and can bear high levels of torque and power thanks to a high contact ratio, although their complex geometry requires recognizing the parameters which affect the transmission efficiency and durability. Vibration is one of the main issues since it affects the stress distribution, contact pressure, and the fatigue life of a geartrain. Several parameters, such as the time-varying mesh stiffness and the gear mesh transmission error, exert a prominent influence on vibrations and are sources of driveline noise. Therefore, Mesh Stiffness (MS) and Transmission Error (TE) are two key parameters that take an intense research activity. A wide range of methods has been employed to calculate these two parameters. To calculate the static transmission error (STE) and the MS of a gear pair, the loaded tooth contact analysis (LTCA) has to be carried out. The LTCA could be done through different methods, e.g. finite element method (FEM), experimental method, analytically. In the last decade, different software have been released and developed. These software employ FEM, standards (for instance, ISO), or both methods to extract MS/TE for different gear sets. In this study, both STE and MS are calculated using different methods, and the results comparison is presented from both points of view, statics and dynamics.

Loaded tooth contact analysis and dynamic investigation of Spiral Bevel Gears / Molaie, Moslem; Iarriccio, Giovanni; Pellicano, Francesco; Samani, Farhad S.; Zippo, Antonio. - In: ENGINSOFT NEWSLETTER. - (2021). ( INTERNATIONAL CAE CONFERENCE AND EXHIBITION 2021 VICENZA 2021).

Loaded tooth contact analysis and dynamic investigation of Spiral Bevel Gears

moslem molaie;Giovanni Iarriccio;Francesco Pellicano;Antonio Zippo
2021

Abstract

To transfer the power between non-parallel shafts, bevel gear pairs, especially spiral bevel gear pairs (SBGs), play a significant role in transmission systems. SBGs are smooth, quiet, and can bear high levels of torque and power thanks to a high contact ratio, although their complex geometry requires recognizing the parameters which affect the transmission efficiency and durability. Vibration is one of the main issues since it affects the stress distribution, contact pressure, and the fatigue life of a geartrain. Several parameters, such as the time-varying mesh stiffness and the gear mesh transmission error, exert a prominent influence on vibrations and are sources of driveline noise. Therefore, Mesh Stiffness (MS) and Transmission Error (TE) are two key parameters that take an intense research activity. A wide range of methods has been employed to calculate these two parameters. To calculate the static transmission error (STE) and the MS of a gear pair, the loaded tooth contact analysis (LTCA) has to be carried out. The LTCA could be done through different methods, e.g. finite element method (FEM), experimental method, analytically. In the last decade, different software have been released and developed. These software employ FEM, standards (for instance, ISO), or both methods to extract MS/TE for different gear sets. In this study, both STE and MS are calculated using different methods, and the results comparison is presented from both points of view, statics and dynamics.
2021
INTERNATIONAL CAE CONFERENCE AND EXHIBITION 2021
VICENZA
2021
Molaie, Moslem; Iarriccio, Giovanni; Pellicano, Francesco; Samani, Farhad S.; Zippo, Antonio
Loaded tooth contact analysis and dynamic investigation of Spiral Bevel Gears / Molaie, Moslem; Iarriccio, Giovanni; Pellicano, Francesco; Samani, Farhad S.; Zippo, Antonio. - In: ENGINSOFT NEWSLETTER. - (2021). ( INTERNATIONAL CAE CONFERENCE AND EXHIBITION 2021 VICENZA 2021).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1378341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact